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Exercise 20

Apply the Fourier transform to solve the initial-value problem for the dissipative wave equation

utt = c2uxx + αuxxt, −∞ < x <∞, t > 0,

u(x, 0) = f(x), ut(x, 0) = αf ′′(x) for −∞ < x <∞,

where α is a positive constant.

Solution

The PDE is defined for −∞ < x <∞, so we can apply the Fourier transform to solve it. We
define the Fourier transform here as

F{u(x, t)} = U(k, t) =
1√
2π

ˆ ∞
−∞

e−ikxu(x, t) dx,

which means the partial derivatives of u with respect to x and t transform as follows.

F
{
∂nu

∂xn

}
= (ik)nU(k, t)

F
{
∂nu

∂tn

}
=
dnU

dtn

Take the Fourier transform of both sides of the PDE.

F{utt} = F{c2uxx + αuxxt}

The Fourier transform is a linear operator.

F{utt} = c2F{uxx}+ αF{uxxt}

Transform the derivatives with the relations above.

d2U

dt2
= c2(ik)2U + α(ik)2

dU

dt

Expand the coefficients.
d2U

dt2
= −c2k2U − αk2dU

dt

Bring all terms to the left side.

d2U

dt2
+ αk2

dU

dt
+ c2k2U = 0 (1)

The PDE has thus been reduced to an ODE. Before we solve it, we have to transform the initial
conditions as well. Taking the Fourier transform of the initial conditions gives

u(x, 0) = f(x) → F{u(x, 0)} = F{f(x)}
U(k, 0) = F (k) (2)

∂u

∂t
(x, 0) = αf ′′(x) → F

{
∂u

∂t
(x, 0)

}
= F{αf ′′(x)}

dU

dt
(k, 0) = α(ik)2F (k) = −αk2F (k). (3)
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We can solve equation (1) with the Laplace transform since t > 0. The Laplace transform of
U(k, t) is defined as

L{U(k, t)} =U(k, s) =

ˆ ∞
0

e−stU(k, t) dt,

so the first and second derivatives transform as follows.

L
{
dU

dt

}
= sU(k, s)− U(k, 0) (4)

L
{
d2U

dt2

}
= s2U(k, s)− sU(k, 0)− dU

dt
(k, 0) (5)

Take the Laplace transform of both sides of equation (1).

L
{
d2U

dt2
+ αk2

dU

dt
+ c2k2U

}
= L{0}

The Laplace transform is a linear operator.

L
{
d2U

dt2

}
+ αk2L

{
dU

dt

}
+ c2k2L{U} = 0

Use equations (4) and (5) here.[
s2U(k, s)− sU(k, 0)− dU

dt
(k, 0)

]
+ αk2[sU(k, s)− U(k, 0)] + c2k2U(k, s) = 0

Expand the left side and substitute equations (2) and (3).

s2U(k, s)− sF (k) +�����
αk2F (k) + αk2sU(k, s)−�����

αk2F (k) + c2k2U(k, s) = 0

The ODE has thus been reduced to an algebraic equation. Factor U(k, s) and bring the terms
without it to the right side.

(s2 + αk2s+ c2k2)U(k, s) = sF (k)

Divide both sides by s2 + αk2s+ c2k2.

U(k, s) =
s

s2 + αk2s+ c2k2
F (k)

In order to change back to u(x, t), we have to take the inverse Laplace transform of U(k, s) to get
U(k, t) and then take the inverse Fourier transform of it. Our task now is to write U in a form
that we can easily transform. The two inverse Laplace transforms we will eventually use are

L−1
{

s− a
(s− a)2 + b2

}
= eat cos bt (6)

L−1
{

b

(s− a)2 + b2

}
= eat sin bt, (7)

so we want to write U with terms that have these forms. Complete the square in the denominator.

U(k, s) =
s(

s+ αk2

2

)2
+
(
c2k2 − α2k4

4

)F (k)
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Rewrite U so that s+ αk2/2 is in the numerator.

U(k, s) =
s+ αk2

2(
s+ αk2

2

)2
+
(
c2k2 − α2k4

4

)F (k) + −αk2

2(
s+ αk2

2

)2
+
(
c2k2 − α2k4

4

)F (k)
Multiply the numerator and denominator of the second fraction by

√
c2k2 − α2k4/4.

U(k, s) =
s+ αk2

2(
s+ αk2

2

)2
+
(
c2k2 − α2k4

4

)F (k)− αk2

2

1√
c2k2 − α2k4

4

√
c2k2 − α2k4

4(
s+ αk2

2

)2
+
(
c2k2 − α2k4

4

)F (k)
Now we’re ready to take the inverse Laplace transform. Use equations (6) and (7) here.

U(k, t) = F (k)e−
αk2

2
t cos

(
t

√
c2k2 − α2k4

4

)
− αk2

2

F (k)√
c2k2 − α2k4

4

e−
αk2

2
t sin

(
t

√
c2k2 − α2k4

4

)

To make U(k, t) easier to work with, introduce a new variable ω = ω(k) for the square root term.

ω(k) =

√
c2k2 − α2k4

4

Then, after factoring,

U(k, t) = F (k)e−
αk2

2
t

(
cosωt− αk2

2ω
sinωt

)
.

It’s not necessary to consider the case where c2k2 − α2

4 < 0 because cos iωt = coshωt and
−i sin iωt = sinhωt. We’re ready now to take the inverse Fourier transform. It is defined as

F−1{U(k, t)} = u(x, t) =
1√
2π

ˆ ∞
−∞

U(k, t)eikx dk.

Plug U(k, t) into the definition of the inverse Fourier transform to get u(x, t).

u(x, t) =
1√
2π

ˆ ∞
−∞

F (k)e−
αk2

2
t

(
cosωt− αk2

2ω
sinωt

)
eikx dk

Recall that sine and cosine can be written in terms of exponentials using Euler’s formula.

cosωt =
eiωt + e−iωt

2

sinωt =
eiωt − e−iωt

2i

Substituting these expressions, we get

u(x, t) =
1√
2π

ˆ ∞
−∞

F (k)e−
αk2

2
t

[(
eiωt + e−iωt

2

)
− αk2

2ω

(
eiωt − e−iωt

2i

)]
eikx dk.

Expand the integrand and factor the terms in eiωt and e−iωt.

u(x, t) =
1√
2π

ˆ ∞
−∞

F (k)e−
αk2

2
t

[
1

2

(
1 +

iαk2

2ω

)
eiωt +

1

2

(
1− iαk2

2ω

)
e−iωt

]
eikx dk
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Distribute eikx and F (k) and 1/
√
2π.

u(x, t) =

ˆ ∞
−∞

e−
αk2

2
t

[
1

2

(
1 +

iαk2

2ω

)
F (k)√
2π

ei(kx+ωt) +
1

2

(
1− iαk2

2ω

)
F (k)√
2π

ei(kx−ωt)
]
dk

Therefore,

u(x, t) =

ˆ ∞
−∞

e−
αk2

2
t[A(k) ei(kx+ωt) +B(k) ei(kx−ωt)] dk,

where

A(k) =
1

2

(
1 +

iαk2

2ω

)
F (k)√
2π

B(k) =
1

2

(
1− iαk2

2ω

)
F (k)√
2π

ω = ω(k) =

√
c2k2 − α2k4

4

F (k) =
1√
2π

ˆ ∞
−∞

e−ikxf(x) dx.
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